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Summary

The multi-dimensional ensemble-averaged compressible time-dependent
Navier-Stokes equations in conjunction with mixing length turbulence model and
shock capturing technique have been used to study the terminal shock type of
flows in various flight regimes occurring in a diffuser/inlet model. The
numerical scheme for solving the governing equations is based on a linearized
block implicit approach and the following high Reynolds number calculations
have been carried out: (1) 2-D, steady, subsonic; (2) 2-D, steady, transonic
with normal shock, (3) 2-D, steady, supersonic with terminal shock, (4) 2-D,
transient process of shock development and (5) 3-D, steady, transonic with
normal shock. The numerical results obtained for the 2--D and 3-D transonic
shocked flows have been compared with corresponding experimental data; the
calculated wall static pressure distributions agree well with the measured

data.



INTRODUCTION

Proper design of the inlet flow region upstream of the compressor face is
an important component in the overall design of the aircraft gas turbine for
subsonic, transonic and supersonic inlet configurations.

In principle many of the problems of subsonic aircraft inlets are also
encountered with transonic and supersonic installations. However, particular
complexity is found in practice with transonic and supersonic aircraft, since
not only is there the enlarged flight regime to consider, but now the influence of
inlet shock structure on flow stability and engine-inlet matching must be taken
into account. The importance and complexity of the influence of this inlet shock
structure requires detailed investigation, which at present is accomplished by
extensive and expensive experimental testing. Recently, however, there have
been encouraging developments in the potential use of analyses to reduce the
required extensive experimental mapping. In the transonic and supersonic inlet,
the flow field can be divided into three main components: a supersonic region
in the upstream portion of the inlet which leads into the terminal shock region
and finally a subsonic diffusion region downstream of the terminal shock.

In regard to the supersonic region Buggeln, McDonald, Levy and Kreskovsky (Ref. 1)
have developed a three-dimensional spatial forward marching viscous flow analysis
which has been applied successfully to several supersonic inlet configurations
(Refs. 1-4). Although this analysis has given very favorable results in the
supersonic portion of the inlet, the assumptions required to allow a forward
marching calculation are inappropriate in the region of the terminal shock.
Downstream of the terminal shock region, the flow is entirely subsonic and in
this region the subsonic spatial forward marching analysis of Levy, Briley

and McDonald (Ref. 5) is available. However, a portion of the flow field

still requiring attention is the terminal shock region where procedures which
are based upon a spatial forward marching method are invalid. It is this
terminal shock region which is the subject of the present effort.

The terminal shock region is a very difficult problem which impacts
upon both the loss characteristics and stability characteristics of the inlet flow.
In a practical mixed compression supersonic inlet, the requirement of shock
structure stability determines to large extent the normal shock loss in the inlet,
itself a major contribution to the overall inlet losses. In essence by allowing

some supersonic expansion after the geometric throat i.e. supercritical operation,



with subsequent shock down to subsonic flow via a normal shock, stability margin
is obtained at the cost of the normal shock loss. If the normal shock were to
occur very near the geometric throat where the local Mach number was unity, the
resulting normal shock loss would be minimal but the inlet would be susceptable
to unstarting. Having some supersonic reacceleration after the geometric throat
Places the normal shock downstream of the throat where a degree of stable upstream
shock movement is possible without umnstarting the inlet. This upstream shock
movement could be unavoidable in practice for instance as the result of changing
engine operating conditions or the result of changes in the external flow. Thus,
an inlet design in which a terminal shock of some finite strength occurs down-
stream of the throat is a common occurrence.

The flow in the region of the terminal shock is very complex. First of all
it is transonic, secondly shockwave boundary layer interaction with possible
accompanying separation occurs and thirdly the flow is very sensitive to area
changes, and hence to the three-dimensionality of the geometry. As a result
of these properties optimizing the location of the normal shock to maximize
stability while minimizing losses is a very demanding, yet very important
task for analysis. Further, although the flow downstream of the normal shock
may be treated by viscous subsonic forward schemes, nevertheless it has the
transonic region as initial conditions, and the forward marching calculation
may prove sensitive to the inflow and hence require an accurate definition of
the initial conditions. Thus, there exists powerful motivation to develop an
analysis of the transonic region of the inlet, which would include three-
dimensionality and viscous effects. The ability to compute time-dependent
flows would also be valuable. With this feature the steady flow (should it
exist) would be computed as the time asymptote of the integration from the
initial time zero guess of the flow field. Following this, the steady
transonic shock structure could be perturbed and the stability of the system
determined. The transient perturbation could be introduced by varying the
inlet or the exit condition, depending on the physical disturbance being
simulated.

Insofar as the governing equations are concerned, the inherent mixed
elliptic hyperbolic nature of steady transonic flow does not encourage the
use of forward marching in space, except perhaps in some corrector sense
once an approximate transonic solution has been obtained. For governing
equations one could consider the transonic potential equation, however, in

the current problem a knowledge of the shock losses is critical, and this



precludes a potential approach. Turning to the Euler equations, these

would permit shock losses to occur; however, the interest in and flow
sensitivity to the Interaction with the wall boundary layers make a viscous
correction mandatory. The prospect of performing a numerical solution of the
Euler equations and coupling this in an iterative manner with a three-
dimensional boundary layer scheme at transonic speeds is not attractive.

Even if converged solutions could be obtained the resulting scheme would be
unlikely to offer any significant savings in computational expense relative
to solving the full Navier-Stokes equations, at least at transonic speeds
where the interaction between the core flow and the boundary layer could be
very sensitive and difficult to converge. In any event, the resulting
procedure would still suffer difficulties with flow separation. The complex
fluid mechanics involved in the transonic region of the inlet make the use of
the three-dimensional compressible ensemble-averaged time-dependent Navier-
Stokes equations attractive for this problem. Such an approach is described

in the present report.



LIST OF SYMBOLS

Symbols

A+ van Driest damping coefficient

Cp specific heat at constant pressure
D determinant of the Jacobian matrix
D dissipation function

d distance to the nearest wall

d+ dimensionless distance to the nearest wall
h enthalpy, throat height

') mixing length

2o mixing length in the core flow region
P static pressure

q magnitude of the velocity

>T

q turbulent heat flux vector

iy

q mean heat flux vector

R universal gas constant

Re Reynolds number

t time

T temperature

T® stagnation temperature

> .

u velocity vector



LIST OF SYMBOLS (continued)

Symbols

u velocity component in x-direction

u friction velocity

v velocity component in y-direction

w velocity component in z-direction

L w at the edge of the boundary layer

X, xl cartesian coordinate in transverse direction
Vs x2 cartesian coordinate in spanwise direction
yl, y2, y3 computational coordinates

Z, Xg cartesian coordinate in streamwise direction

Greek Symbols

8 boundary layer thickness

€ turbulence energy dissipation rate
K von Karman constant

! dynamic viscosity

Vart artificial dissipation

£, Ny, L computational coordinates

T molecular stress tensor

WT turbulent stress tensor



LIST OF SYMBOLS (continued)

Greek Symbols

p density
o artificial dissipation parameter
T time
T, local shear stress
T T etc.
xx’ Txy’ component of stress tensor
) meanflow dissipation rate
Subscripts
b associated with the bottom wall
s associated with the side wall
t associated with the time or top wall
X associated with the x-direction
y associated with the y-direction
z associated with the z-direction
Superscripts
T associated with turbulent quantities,

transpose of matrix



ANALYSIS

S
Governing Equations

The equations used in the present effort are the ensemble-averaged,

time-dependent Navier-Stokes equations which can be written in vector form as

Continuity
op - &)
-a_f— VPU-O
Momen tum
dpu _ )
TS +V-(pUT) =Vp+V-(7 + 77) 2)
Energy
T+V-(pun) =—V'(ﬂ'+_¢1’T)+B—t +¢)+p€ (3

where p is density, 4 is velocity, p is pressure,; is the molecular stress
tensor,'nT is the turbulent stress tensor, h is enthalpy,a is the mean heat flux
vector, ZT is the turbulent heat flux vector, ¢ is the mean flow dissipation
rate and e is the turbulence energy dissipation rate. If the flow is assumed

at a comnstant total temperature, the energy equation is replaced by

To = T + q— - = constant (%)

where T° is the stagnation temperature, q is the magnitude of the velocity and
CP is the specific heat at constant pressure. For the purpose of economy, both
in terms of run time and computer storage, calculations presented in this report
were run with the constant total temperature assumption. These equations,

supplemented by an equation of state,

p=pRT (5)

form the system governing the terminal shock region problem.



Dependent Variables and Coordinate Transformation

The governing equations, Eqs. (1) - (3), are written in general vector
form and prior to their application to specific problems it is necessary to
decide upon both a set of dependent variables and a proper coordinate trans-
formation. Based upon previous investigations (e.g. Refs. 6 and 7) the specific
scalar momentum equations to be solved are the x, y and z Cartesian momentum
equations. The dependent variables chosen are the physical Cartesian velocities
u, v, w and the density p.

The equations are then transformed to a general coordinate system in which the

general coordinates, yJ are related to the Cartesian coordinates, %y, X, and xq
by

<
]

3 ; j = 1,2,3.
y (xl,xz,x3,t) H h| »2,3
(6)

T =t

As implied by Eq. (6), the general coordinate yJ may be a function of both the
Cartesian coordinates and time. This coordinate time dependence will have an
implication in so far as the choice of governing equation form is concerned.

The governing equations can be expressed in terms of the new independent

variables yJ as

oW oW oF J6 dH
e Thee thog T T

L oW, OF 06 oM
T 017 TIx 017 77y a'r) M2 a'r]

oW, , OF o6 on
Yo ar o toar ot -

- 1 oF, _QEL oF,
" Re €xf+ﬁx 67;+€* at

86, 96, 9
g " Mo vt

M, 0w, , o
z 9 " M2 0 T 2 oL



through a straight forward application of chain rule differentiation. 1In Eq. (7)

€=y
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and
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Since in general the computational coordinates may be a function of time
with a time-dependent Jacobian, the equations are recast into the so-called

'strong conservation form' (Ref. 8).

+
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Equation (9) represents the Navier-Stokes equation in strong conservation form
and represents the set of equations solved in the present work.
Insofar as the coordinate system is concerned, the cases considered in
the present effort used a simplified coordinate transformation in which;
£ =1 (x,2)

‘ §=f3(z) (10)
| =72(y)

i.e., a stretched and contour-fitted non-orthogonal grid was used. The specific
grid transformation used in the streamwise direction is that of Oh (Ref. 9},
which allows high resolution in user specified regions. In the cross-

sectional plane hyperbolic tangent transformations were adopted. The regions

of high resolution were taken to be those near solid walls (in the x and y
directions) and those near the throat as well as region of sharp contraction

of the contour in the z direction.
Turbulence Model

Since the flows of interest are in the turbulent regime, it is necessary
to specify a turbulence model. The present results were obtained from the

McDonald's model (Ref. 10) with Van Driest damping (Ref. 11),
B [ .
Z =/ tanh —K—d—J I—exp<_d_.> (11)
m Z 1
o JL

. + . . . .
where « is the von Karman constant,A is the van Driest damping coefficient

and d is the distance to the nearest solid wall.

) At = 26.0
ZOO- 0.098 >

and K = 0.40 for two-dimensional calculations, while k = 0.41 for three-

. . . + . .
dimensional calculations. The nondimensional distance d 1is defined as

PUT
d+ = ~- '
d< I > (12)

and the friction velocity u, in the present analysis is taken as

112
u = (%) (13)
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where the local shear stress Ty is obtained from

5 = (20:0)""2 as

where D is the dissipation function
— | - -
D= 5 [(V0) + (VD) (15)

Note that for small d the tanh function in Eq. (11) reduces to kd while for
large d it approaches 2.

In boundary layer analysis & 1is usually taken as 0.098 where § is the
boundary layer thickness taken at the location where w/we = 0.99. However,
this definition of § assumes the existence of an outer flow where the velocity
LA is independent of distance from the wall at a given streamwise station, i.e.,
it assumes Wo is only a function of the streamwise coordinate. Most Navier-Stokes
calculations show no such definitive region to exist and, therefore, an alternate
definition is required. 1In the present effort the boundary layer thickness in the two-
dimensional region was set by first determining Woax? the maximum streamwise

velocity, at a given station and then setting § via;

8 =2.0d (16)

(W/ Wmax®K)

i.e., 8§ was taken as twice the distance (measured away from the nearest wall)
for which w/wmax = k. The value of k used in the present effort was 0.90.

The mixing length in the core region was set by linear interpolation between
the top and bottom wall boundary layer edge values. The model described above
was used in two—-dimensional calculations as well as in the nominally two-
dimensional region of three~dimensional calculation. This nominally two-

dimensional region was defined as y : Y ~ 6 , where GS was the side wall

boundary layer thickness evaluated, accordinz to Eq. (16), at the midpoint
between the top and bottom corners, and was taken as a measure of the overall
boundary layer thickness along the side wall, Once Gs had been determined, Vg
was then set as the nearest y-location of the grid points with Yg being slightly

larger than GS. Henceforth, the mixing lengths at each point along y = Vg
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together with the locations of the top and bottom wall boundary layer edges,
were obtained as described before. A schematic of the cross-sectional regions
involved in the three-dimensional calculation is depicted in Fig. A, in which

X, and x_ are the edges of the bottom and top wall boundary layers at y = Yg+

In the bzttom wall corner region (i.e., O < y* < v, and 0 = x* < xb), the
mixing lengths were calculated according to Eq. (11) with a constant L.
specified as the length scale at the point (xb, ys). Similarly, the length
scales of points in the top wall cormer region (i.e., O 2 y* <y, and

X, < x* s x x) were evaluated according to Eq. (11) with another constant
2 specified as the mixing length at the point (xt, ys). Finally, the length
scales of points in the side wall boundary layer region (i.e. 0 = y* < Ve

X s x* b xt) were obtained by using Eq. (11) with £_ specified as the

*
respective mixing lengths at the points (x , yS).

B i)

max | N
| = : nominally 2-D region
x, Yy - Vg y
i~ —
2 g% 2 xx < . ; ;
I ' 0-y <Yg Ky X X side wall B. L. region
l 0= y*‘<ys, o= x*'<xb: bottom corner region
! 0= y*'iys, x < x* = X .yt top corner region
I .
xb"“\
0 : —— Y
yS
Figure A
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Boundary Conditions

The authors' experience in solving Navier-Stokes equations has indicated
the important role of boundary conditions in determining accurate solutions
and rapid numerical convergence. The boundary conditions used in the present cal-
culations with subsonic inflow and outflow follow the suggestion of Briley and
McDonald [12] which specifies upstream total pressure and downstream static
pressure conditions. Following this approach the stagnation pressure, transverse
velocity and pressure derivative were set on the upstream boundary. In addition,
a boundary layer thickness was specified and a dimensionless boundary layer
profile set in that region. No-slip conditions in conjunction with zero
pressure gradient were set at solid walls. The static pressure and
velocity second derivatives were set at the downstream boundary. As mentioned
above, this approach is valid for subsonic inflow. If the flow at the upstream
boundary is supersonic, then, instead of the total core flow conditions,
values of velocity components and density must be specified [27]. A more detailed
description of the boundary conditions used for the present calculations will

be given later in the section "Test Cases'.
Numerical Procedure

The numerical procedure used to solve the governing equations is a
consistently split linearized block implicit (LBI) scheme originally developed
by Briley and McDonald [13]. A conceptually similar scheme has been developed
for two-dimensional MHD problems by Lindemuth and Killeen {14]. More recently
Beam and Warming (Ref. 25) have derived this and other related schemes by the
method of approximate factorization. The procedure is discussed in detail
in Refs. 13 and 15. The method can be briefly outlined as follows: the
governing equations are replaced by aﬁ implicit time difference approximation,
optionally a backward difference or Crank-Nicolson scheme. Terms involving
nonlinearities at the implicit time level are linearized by Taylor expansion
in time about the solution at the known time level, and spatial difference
approximations are introduced. The result is a system of multidimensional
coupled (but linear) difference equations for the dependent variables at the
unknown or implicit time level. To solve these difference equations, the

Douglas~Gunn [16] procedure for generating alternating-direction implicit
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(ADI) schemes as perturbations of fundamental implicit difference schemes
is introduced in its natural extension to systems of partial differential
equations. This technique leads to systems of coupled linear difference
equations having narrow block-banded matrix structures which can be solved
efficiently by standard block-elimination methods.

The method centers around the use of a formal linearization technique
adapted for the integration of initial-value problems. The linearization
technique, which requires an implicit solution procedure, permits the solution
of coupled nonlinear equations in one space dimension (to the requisite degree
of accuracy) by a one-step noniterative scheme. Since no iteration is required
to compute the solution for a single time step, and since only moderate effort
is required for solution of the implicit difference equations, the method is
computationally efficient; this efficiency is retained for multidimensional
problems by using what might be termed block ADI techniques. The method is
also economical in terms of computer storage, in its present form requiring
only two time-levels of storage for each dependent variable. Furthermore,
the block ADI technique reduces multidimensional problems to sequences of
calculations which are one dimensional in the sense that easily-solved narrow
block~banded matrices associated with one-dimensional rows of grid points are
produced. A more detailed discussion of the solution procedure as discussed

by Briley, Buggeln and McDonald [17] is given in the Appendix.
Artificial Dissipation

One major problem to be overcome in calculating high Reynolds number
flows using the Navier-Stokes equations is the appearance of spatial oscil-
lations associated with the so-called central difference problem. When
spatial derivatives are represented by central differences, high Reynolds
number flows can exhibit a saw tooth type oscillation unless some mechanism
is added to the equations to suppress their appearance., This dissipation
mechanism can be added implicitly to the equations via the spatial difference
molecule (e.g. one-sided differencing) or explicitly through addition of a
specific term. The present authors favor this latter approach for two reasons.
First, if a specific artificial dissipation term is added to the equations,
it is clear precisely what approximation is being made. Secondly, if a
specific term is added to suppress oscillations, the amount of artificial
dissipation added to the equations can be easily controlled in magnitude and

location so as to add the minimum amount necessary to suppress spatial
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oscillations. Studies can also be easily performed to evaluate the effect of

the explicitly added dissipation on the solution.

Various methods of adding artificial dissipation were investigated in Ref. 18,
and these were evaluated in the context of a one-dimensional model problem. The
model problem used was one-dimensional flow with heat transfer. Flow was
subsonic at the upstream boundary, accelerated via heat sources until a Mach
number of unity was reached and then accelerated by heat sinks. The exit back
pressure was raised to cause a shock to appear in the supersonic region. This
basic one-dimensional problem contained many relevant features including strong
accelerations and appearance of a normal shock wave and, therefore, it served
as a good test case for various forms of artificial dissipation which could
be used in the presence of shock waves.

The results of the Ref. 18 investigation led to the conclusion that for
the model problem a second order artificial dissipation approach was the best
3% or

BZZ

of those considered. This approach adds a term of the form Vorte

g% Vart %%l to each governing equation where ¢ = p, u, v, w for the continuity,

x-momentum, y-momentum and z-momentum equations respectively and Vare is

determined by [UZ|AZ < 1
—_ o
v+(vart)Z Z

In the above equation AZ is the distance between grid points in a given coordinate
is the velocity in this direction, ©

direction, U is the artificial dissipation

A Z
parameter for this direction and v is the effective kinematic viscosity. The
equation determines Vore with Vart taken as the smallest non-negative value

which will satisfy the expression. It should be noted that in two space
dimensions each equation contains two artificial dissipation terms, one in each
coordinate direction. For example, the streamwise momentum equation expressed

in two-dimensional Cartesian coordinates would contain the artificial dissipation

terms

92w 92w

(v, —s + (v —_
_art)x ax 2 ( cr'r)Z 322
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Obviously the desirable condition occurs when sufficient artificial dis-
sipation is added to the equations to suppress spurious oscillations but the
amount added does not perceptively change the physical solution. The results
of Refs. 18 and 19 indicated that such conditions could be met when the dissipa-
tion parameter, o, was varied between values of .10 and .025 and these results
were confirmed for the terminal shock problem in the present effort.

Although the original artificial dissipation study was carried out with
terms of the form (v ) 32¢/822, the form used in the present case was

art’ Z

P (\)art 9¢/082)/3Z. However, recent studies for airfoil and cascade calculations
indicate that for low values of o little significant difference occurs as a

result of using one form or the other.

Test Cases

Several test cases were run with the MINT computer code to evaluate the
previously described computational procedures for inlet terminal shock flow
problems. 1In general, works aimed at clarifying the fluid mechanical processes
involved in the terminal shock region of channel flows are scarce and, in
particular, the available data in many cases are not sufficiently complete to
form the basis for detailed numerical comparisons. One experimental investigation
which gives detailed measurements is that of Bogar, Sajben, Kroutil and Salmon
(Refs. 20 and 21) which focuses upon flows in the terminal shock region
of inlets/diffusers. More specifically, they investigated transonic flows in
nominally two-dimensional, supercritically operated diffusers. These flows
exhibit many significant features found in supersonic inlets of aircraft.

A detailed description of the diffuser model and results describing both the
time-mean and the oscillating flow properties were reported in Ref. 20, while
laser Doppler velocimeter measurements were given in Ref. 21. Since these
detailed data are considered as reliable and the trends observed are believed

to be present in three-dimensional inlet flows as well, this particular data
base was selected for designing the test cases for the present effort. The
following five cases of different flows have been calculated: (1) two-dimensional
subsonic diffuser flow, (2) two-dimensional transonic diffuser flow with a normal
shock, (3) two-dimensional supersonic inlet flow with a terminal shock,

(4) transient development of normal shock in a two-dimensional convergent-
divergent channel and (5) three-dimensional transonic diffuser flow with a

normal shock. 1In all of these calculations the flows are turbulent and,

except for case (3), only the asymptotic steady-state solutions are of interest.
Furthermore, the selected diffuser/inlet models are either geometrically

similar or identical to each other.
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A schematic of the inlet/diffuser geometry and the associated coordinate
system is shown in Fig. 1. The diffuser/inlet model is a convergent-divergent
channel with a flat bottom and a contoured top wall. 1In addition, the cross-
section is rectangular everywhere. A detailed description of this model can be
found in Ref. 20 and will not be repeated here. However, it should be noted
that the computational domain extends from 3.75h upstream of the geometric
throat to 8.65h downstream of the throat, where h is the throat height. For
the three-dimensional calculation, the throat cross-sectional aspect ratio is
3.0 with the computational domain extending from one side wall to the center
plane, and no-slip conditions are applied on all solid walls. This is some-
what different from the experimental conditions in which the throat cross-
sectional aspect ratio is 4.0 and suction slots are used at several locations
to establish the nominal two-dimensionality of the flow.

An important aspect of almost all numerical calculations is the generation
of a suitable computational coordinate system. The present approach uses a
contour fitted coordinate system in which both top and bottom as well as side
channel walls (for the three-dimensional calculation) fall on coordinate lines.
As mentioned earlier, high grid resolution near the walls is obtained by employing
a hyperbolic tangent grid packing transformation; the streamwise resolution is
obtained by clustering grid points near the location of sharp contraction of the
contour as well as near the expected location of the shock. This grid is
accomplished by using a versatile grid distribution generator which allows
multiple regions of grid packing (Ref. 9). For the present calculationms,

31 grid points are used in the transverse direction (x-direction) while 41 grid
points are used in the streamwise direction (z-direction). In addition, for
three-dimensional case, 16 grid points are used in the spanwise direction
(y-direction). Results of all the five test cases were obtained with the same
grid distributions.

For all of the test calculations, the Reynolds number based on the inlet
core flow condition and the throat height is approximately 4.73 x 105, the
inlet core Mach number is approximately 0.46 for cases (1), (2), (4) and (5)
while it is approximately 1.90 for case (3). Under the assumption that the
flows are at constant total temperature, the equations solved are the continuity

equation and momentum equations. The previously described mixing length model
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and shock capturing technique are used to provide turbulent viscosity and to
locate the shock. As for the boundary conditions, no-slip condition together
with zero first derivative of the static pressure (with respect to the transverse
computational coordinate) are imposed along the top and bottom walls. For three-
dimensional case, no-slip condition together with zero first derivative of the
static pressure (with respect to the spanwise computational coordinate) are
applied along the side wall while the symmetry conditions are used for the
center plane. At the exit where the flows are subsonic for all test cases,
constant static pressure is specified and the second streamwise (computational
coordinate) derivatives of all velocity components are set to be zero. For
cases (1), (2), (4) and (5) the flows at the inlet are subsonic, the core flow
total conditions together with wall boundary layer thicknesses and profile
shapes of the streamwise velocity component are specified. In addition, the
second streamwise (computational coordinate) derivatives of static pressure
and velocity components in the cross-sectional plane are set to be zero.
Experience indicates that it may be beneficial to freeze the cross-sectional
velocity components after the initial impulsive transients had passed and this
is done for case (5) to obtain the highly damped solution. As for the profile
of the streamwise velocity component, the profile suggested by Musker (Ref. 22)
supplemented by the Van Driest transformation (Ref. 23) to account for the
effects of compressibility is adopted. In case (3), the flow at the inlet
section is supersonic except in wall regions of the boundary layer, the
velocity components, the density and the static enthalpy (temperature) are
specified for the supersonic portion while the second streamwise (computational
coordinate) derivatives of the velocity components and the pressure are set
to be zero for the subsonic portion of the inflow section. Consequently, the
density and temperature in the subsonic portion are calculated in accordance
with the specified total enthalpy (temperature) and the equation of state.
In this way, the disturbances occurring in the subsonic portions of the
internal flow field are allowed to propagate through the upstream inflow
section.

Since the governing equations are time-dependent, initial conditions
are needed to start the calculation. In general, a relatively simple approxi-
mation to the flow field suffices as an initial condition, however, if a better

estimate is easily available it should be used. The construction of the initial
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conditions for each test case will be described in the following section.
However, a general comment concerning the presence of the discontinuities in the
initial conditions should be made here, since it is relevant to the terminal shock
type of calculations. One of the most important reasons for the occurrence of
surfaces of discontinuity in a gas is the possibility of discontinuities in the
initial conditions. These conditions may in general be prescribed arbitrarily.
It is known, however, that certain conditions must hold on stable surfaces of
discontinuity in a gas; for instance, the discontinuities of pressure, density,
etc. 1in a shock wave are related by the Rankine-Hugoniot relations. It is,
therefore, clear that if these conditions are not satisfied in the initial dis-
continuity, it cannot continue to be a discontinuity at subsequent instants.
Instead, it generally splits into several discontinuities (e.g. shock wave,
tangential discontinuity and rarefaction wave); in the course of time, these dis-
continuities of different types move apart. Their propagation, reflection and
subsequent interations may cause undesirable transient impulsives with the
possible consequences of prolonged computing time or even the instability of the
calculation. Therefore, special attention should be paid to the construction of

the initial condition for the terminal shock type of problems.
Computed Results

The previously described test cases cover various flow regimes occurring
in a diffuser/inlet model. Depending on the specified upstream and downstream
boundary conditions, the resultant internal flow field can be quite different
in nature. 1In most of these cases, asymptotic steady-state solutions are of
interest, however, physically meaningful transient solutions for the formation
of shock waves have also been obtained. In addition, the effects of artificial
dissipation on the numerical solutions have been studied and a three-dimensional
calculation has been carried out. A vast amount of information is obtained from
the computation of these test cases, and only selected, representative results
are to be presented here. The relevant flow parameters describing these cases
are given in Table I. These calculations were considered to reach an asymptotic

steady-state when there was virtually no change in the wall static pressure
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distributions over a (dimensionless) time interval of 2 to 6, where a
dimensionless time of 12 is the time required for a particle moving at the
inlet velocity to pass from inlet to exit, and the changes in other flow
variables were of very minor significance. 1In addition, the maximum residual
decreased by one to two orders of magnitude, depending upon the initial condi-

tions and the flow problems.
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Case

Type

2-D, Steady
Subsonic

2-D, Steady
Transonic with
Shock

2-D, Steady
Supersonic with
Terminal Shock

2-D, Transient
Formation of a
Normal Shock

3-D, Steady
Transonic with
Normal Shock

Reh

4,73 x 10

4.73 x 10

4,73 x 10

4,73 x 10

4.73 x 109

TABLE I - Parameters for Test

Inlet Core
Mach No.

0.46

0.46

0.46

0.46

Inlet Top

Wall Boundary

Layer Thickness
§/h

0.12149

0.12149

0.12149

0.12149

0.12149

Cases

Inlet Bottom

Wall Boundary

Layer Thickness
8/h

0.060745

0.060745

0.060745

0.060745

0.060745

Inlet Side
Wall Boundary

Layer Thickness
§/h

0.060745



Case (1): Steady 2-D Subsonic Diffuser Flow

The calculation was initiated with an initial condition which consisted of
a one-dimensional inviscid flow corresponding to the specified diffuser contour
with a simple boundary layer correction applied in the vicinity of no-slip
surfaces. With this initial condition, it took about 60 time steps to reach an
asymptotic steady state solution for 0, =0,= o = 0.5 (which corresponds to a
cell Reynolds number of 2). At this stage, the artificial dissipation parameters
were then lowered to ¢ = 0.05 (which corresponds to a cell Reynolds number 20),
and it took about another 50 time steps to reach an asymptotic steady state
wherein no observable changes occurred over a wide variation in time steps. The
calculated top wall pressure distribution is depicted in Fig. 2, while the
calculated bottom wall pressure distribution is shown in Fig. 3. TFor the purpose
of reference, some relevant measured data for shocked flow, which is established
by a lower exit pressure (Pe = 0.933 as compared to the present 0.96), are also
given. It is obvious that the choice of the artificial dissipation parameters
significantly affect the computed results. Previous experience at SRA with
second order artificial dissipation calculations for transonic shock waves has
indicated that accurate results and sharp shock representation can be obtained
when o is limited to 0.05. Although experimental data for this case is not
available, the results shown in Figs. 2 and 3 are physically realistic. The
wall pressures follow the data for a lower back pressure until slightly upstream
of the throat as is expected. Since the calculation and the data are for cases

with different back pressures, the results diverge as the throat is approached.

Case (2): Steady 2-D Transonic Diffuser Flow with a Normal Shock

The solutions obtained with exit pressure Pe = 0.96 and the artificial
dissipation o = 0.5 was used as the initial condition for this calculation.
At first, the back pressure was dropped to 0.933 over a short period of time
and then fixed for the subsequent computations. After approximately 40 time
steps an asymptotic steady state solution for Pe = 0.933 and 0 = 0.5 was
obtained. Then the artificial dissipation parameter ¢ was dropped to 0.05
and after another 40 time steps, the final steady-state solution for Pe = 0.933
and o = 0.05 was reached. The calculated top wall pressure distribution is
given in Fig. 4 and the calculated bottom wall pressure distribution is shown
in Fig. 5. The calculated results for ¢ = 0.05 agree very well with the

corresponding experimentally measured data (case denoted by Mou = 1.235 in
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Ref. 20). Again, the artificial dissipation parameter plays an important role,
the shock is captured with o = 0.05 while the results are severely smeared with
¢ = 0.5, In fact, the o = 0.5 calculation does not even contain a supersonic
region (Fig. 6). Further investigation of the sensitivity of the calculated flow
fields with respect to the choice of the artificial damping parameter o has been
carried out for o = 0.1. The calculated wall static pressure distributions for
this value of ¢ are essentially the same as those for o = 0.05 and are not
presented here. Therefore, it may be concluded that the present numerical
results are insensitive to the choice of the parameter o when ¢ is in the range
from 0.1 to 0.05. It is noted that, based upon previous experience for shocked
flow, if no artificial dissipation were used the calculation would be unstable.
However, as indicated by the present calculations, if too much artificial dissi-
pation is used the solution would be unrealistically contaminated by its presence.
Case (3): Steady 2-D Supersonic Inlet Flow with Terminal Shock

The construction of the initial condition for this case was essentially the
same as that for Case (1) except that, by applying the Rankine-Hugoniot relatioms,
an initial discontinuity of the pseudo two-dimensional flow field was generated
in the vicinity and downstream of the geometrical throat. The pressure boundary
condition at the exit was specified with its ratio to the pressure at the inflow
section being 5.70; this value is consistent with the initially assumed shock
wave. Such a back pressure was held fixed for subsequent calculations. The
calculation required 70 time steps to reach an asymptotic steady-state solution
for o = 0.5, and then, after lowering the artificial dissipation parameter to 0.1,
another additional 50 time steps was needed to reach the final asymptotic steady
state solutions where no further observable changes in the solution occurred.
In Fig. 7 a schematic flow field is depicted; the difference in the streamwise
and normal scales used in this figure should be noted. An oblique shock is
formed in the region of the compression corner of the top wall (ramp) while near
the bottom wall (cowl) a Mach reflection occurs and the terminal shock stands at
approximately one throat height downstream of the geometric throat. The existence
of the Mach reflection is consistent with the prediction due to the inviscid theory
by noting that the core flow Mach Number near the inflow section is about 1.90 and
the deflection éngle of the top wall is about 18°, under such conditions a regular

reflection of the incident shock wave is not possible. Instead, a Mach reflection
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by the adverse pressure gradients near the wall. A relatively large shock-
induced separation zone exists in the Mach reflection region. Further, there

are terminal shock-induced separation regions along the top and bottom walls,
although the one along the bottom wall is very thin. 1In Fig. 8 the corresponding
dimensionless static pressure distribution along the top wall is presented and in
Fig 9 the corresponding dimensionless static pressure distribution along the bottom
wall is shown. No experimental data are available for comparison, nevertheless,
these results are qualitatively in agreement with the known features of the super-
sonic inlet flow. The above calculations demonstrate the capability of the MINT
code to compute turbulent flows in various flight regimes, as shown by the Mach
Number contours depicted in Figs. 10a, b and c¢c. In these figures, the main flow
direction is from left to right. For Fig. 10a and Fig. 10b, the minimum contour
value is 0.432 with constant increment of 0.032, while for Fig. 10c, the minimum
contour value is 0.46 with constant increment of 0.06, the displayed domain
extends from the inflow section to 3.4 h downstream of the throat where h is the
throat height. Figure 10a shows the Mach Number contours of a subsonic diffuser
flow, Fig. 10b illustrates that of a supercritically operated transonic diffuser
flow with a normal shock region and Fig. 10c gives the Mach Number contours of a
supersonic inlet in which the existence of the oblique shock waves, Mach leg and

a terminal shock region is evident. The corresponding static pressure contours

are given in Figs. 1la, b and c.
Case (4): TUnsteady Shock Development in a 2-D Transonic Diffuser

An investigation of the formation of the normal shock by lowering the
back pressure (Pe) from that of a subsonic diffuser flow to that of a super-
critically operated transonic diffuser flow also has been performed. The
calculation started with the steady-state solution of the subsonic flow
(Pe = 0.96 and ¢ = 0.05) and over a very short period of time the back pressure
was dropped to 0.933 which was then held as constant. Small artificial dissipa-
tion parameter (o = 0.05) and (constant) small dimensionless time step (At = 0.05)
were used. Figure 12 shows the transient development of the static pressure
along the top wall and Fig 13 shows the transient development of the static
pressure along the bottom wall. As it can be seen, the final asymptotic
steady-state solutions agree very well with the corresponding experimentally

measured data (case denoted by Mou = 1.235 in Ref. 20). Although a dimensionless
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time interval of 18 units was required for the flow to change from one steady-
state (subsonic mode without shock) to another steady-state (transonic mode with
a normal shock), the corresponding physical time interval is only about

0.53 x 10_2 second. Since its response to the changes of the back pressure are
very rapid for this transient flow, very little information about the fluid
mechanical process involved in the formation of shock has been provided by most
of the relevant experiments for this problem. Some basic features of such a
process are revealed by the present numerical investigation and will be presented
here. The transient as well as spatial developments of the flow field are
illustrated by Fig. 14, which is a history of Mach Number contours in a region
which extends from two throat height upstream of the throat to 6 throat heights
downstream of the throat. The minimum contour level is 0.432 with a constant
increment of 0.032. The corresponding time history of static pressure contours
are given in Fig. 15. In the early stages of the development, the disturbances
originating at the outflow section propagate in the direction of the upstream;
in particular, the propagating speed of the disturbances within the (contoured)
top wall boundary layer is relatively large. Once these faster moving distur-
bances reach the throat region, disturbances transverse to the mean flow are
generated, which then continue to propagate up-and downstream as they approach
the (flat) bottom wall. In the later stages of shock development, disturbances
propagating in upstream, downstream and transverse directions are undoubtedly
present and they can interact with each other, but the most important distur-
bances responsible for the formation of the shock are the transverse waves
originating at the boundary layer/core-flow interface, which are strongly
influenced by the viscous-inviscid interactions.

Although the present calculation focuses upon the formation of the shock
due to the small changes of the back pressure, the results obtained do strongly
suggest that a one-dimensional inviscid approach is not appropriate for
analyzing the response of the terminal shock in a supersonic inlet to the back
pressure disturbances (i.e. the hammer shock problem). Such an indication is
further supported by the results obtained from a relevant experimental work
(Ref. 24) in which the shock motion induced by externally applied disturbances

were investigated for a supercritically operated transonic diffuser.
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Case (5): Steady 3-D Transonic Diffuser Flow with a Normal Shock

This calculation was initiated with an initial condition which consisted
of a 2-D highly damped (o = 0.5) solution with a simple boundary layer correction
applied in the vicinity of the side wall (y = 0). With these initial conditions,

it took about 80 time steps to reach an asymptotic steady-state solution for

o, = Oy =0, = 0.5. Then the calculation proceded with reduced o, ( = 0.05) for
another 60 time steps. Finally, an additiomnal 50 time steps were advanced with
o, = oy =0, = 0.05 to reach an asymptotic steady state. The calculated top wall

pressure distribution is given in Fig. 16 while the computed bottom wall pressure
distribution is showm in Fig. 17. As would be expected for this flow, the 3-D
results agree quite well with the 2-D numerical results of Case (2) and the
nominally 2-D experimental data (Ref. 20), except that the 3-D shock is slightly
weaker than, and its position is slightly upstream of the 2-D shock. The vari-
ation of the wall static pressure in the spanwise direction is small, as is
shown in Fig. 18, which depicts the pressure contours at various spanwise
locations. The displayed region extends from two throat heights upstream of the
throat to 6 throat heights downstream of the throat. The minimum contour level
is 0.502 with a constant increment of 0.02, Figure 19 presents the streamwise
Mach Number distribution. Points A are inside the side wall boundary layer and
Points B are on the center (symmetry) plane. Both Points A and B are located
slightly below the midplane of each cross-section. The spanwise variation of
the Mach Number contours is illustrated in Fig 20, in which the displayed

region is the same as that in Fig. 18, but the minimum contour level is 0.432
with a constant increment of 0.032. It is noted that, contrary to the static
pressure distribution, the Mach Number distribution exhibits strong spanwise
dependence.

As mentioned above, the strength of the three-dimensional shock is
slightly weaker than its two-dimensional counterpart; such a three-dimensional
effect on the shock strength is also reported in a recent work on the inviscid
transonic flow in an axial compressor rotor (Ref. 28). Further, the position of
the weaker 3-D shock is slightly upstream of the position of its corresponding
stronger 2-D shock; this is consistent with the fact that the flows are in a

supercritically operated inlet/diffuser.
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Concluding Remarks

Due to the complexity of the fluid mechanics invloved in the terminal
shock region of the inlet, the three-dimensional ensemble-averaged compressible
time-dependent Navier-Stokes equations in conjunction with suitable turbulence
modeling and shock capturing technique have been used to study the terminal
shock type of flow problems. The numerical scheme for solving the governing
equations is based on a linearized block implicit approach which is embodied
in a general computer code termed "MINT". The MINT code has been applied to
calculate turbulent flows in various flight regimes occurring in a diffuser/
inlet model. These high Reynolds number calculations are: (1) 2-D, steady,
subsonic; (2) 2-D, steady, transonic with normal shock, (3) 2-D, steady,
supersonic with terminal shock, (4) 2-D, transient process of shock development
and (5) 3-D steady, transonic with normal shock. As an indication of the
validity of these computations, the numerical results obtained for the
2-D/3-D transonic diffuser flows have been compared with corresponding
experimental data, the calculated wall static pressure distributions agree
quite well with the experimentally measured data. Also studied is the role
of the artificial dissipation inthe shock capturing technique, inappropriate choice
of the artificial dissipation will severely smear the shock. These extensive
and carefully designed calculations demonstrate the capabilities of the MINT
code for predicting the complex flows commonly occurring in the engine inlets.
Further investigations should concentrate on the problems concerning
the response of the terminal shock to the externally applied disturbances and
the effects of the turbulence modeling on the small scale flow properties.

In this respect, the turbulence models for three-dimensional terminal shock

flows are of particular concern.

29



APPENDIX ~ SOLUTION PROCEDURE [17]

Background

The solution procedure employs a consistently-split linearized block

implicit (LBI) algorithm which has been discussed in detail in [13, 15].

There are two important elements of this method:

(1)

(2)

the use of a noniterative formal time linearization to
produce a fully-coupled linear multidimensional scheme

which is written in "block implicit" form; and

solution of this linearized coupled scheme using a consistent
"splitting" (ADI scheme) patterned after the Douglas-Gunn

[16] treatment of scalar ADI schemes.

The method is thus referred to as a split linearized block implicit (LBI)

scheme.

30

(1)
(2)

3)

(4)

5

The method has several attributes:

the noniterative linearization is efficient;

the fully-coupled linearized algorithm eliminates instabilities
and/or extremely slow convergence rates often attributed to
methods which employ ad hoc decoupling and linearization
assumptions to identify nonlinear coefficients which are then

treated by lag and update techniques;

the splitting or ADI technique produces an efficient algorithm
which is stable for large time steps and also provides a means
for convergence acceleration for further efficiency in computing

steady solutions;

intermediate steps of the splitting are consistent with the
governing equations, and this means that the "physical"
boundary conditions can be used for the intermediate solutions.
Other splittings which are inconsistent can have severe dif-

ficulties in satisfying physical boundary conditions [15].

the convergence rate and overall efficiency of the algorithm are
much less sensitive to mesh refinement and redistribution than
algorithms based on explicit schemes or which employ ad hoc
decoupling and linearization assumptions. This is important for
accuracy and for computing turbulent flows with viscous sublayer

resolution; and



(6) the method is general and is specifically designed for the
complex systems of equations which govern multiscale viscous

flow in complicated geometries.

This same algorithm was later considered by Beam and Warming [25], but the
ADI splitting was derived by approximate factorization instead of the
Douglas—Gunn procedure. They refer to the algorithm as a "delta form"
approximate factorization scheme. This scheme replaced an earlier non-delta

form scheme [26], which has inconsistent intermediate steps.
Spatial Differencing and Artificial Dissipation

The spatial differencing procedures used are a straightforward adaption
of those used in [13] and elsewhere. Three-point central difference formulas
are used for spatial derivatives, including the first-derivative convection
and pressure gradient terms. This has an advantage over one-sided formulas
in flow calculations subject to 'two-point” boundary conditions (virtually
all viscous or subsonic flows), in that all boundary conditions enter the
algorithm implicitly. In practical flow calculations, artificial dissipation
is usually needed and is added to control high-frequency numerical oscillations
which otherwise occur with the central-difference formula.

In the present investigation, artificial (anisotropic) dissipation terms

of the form

d, Bzu
X j k (1)
j 2 2

h. ax,

J J

are added to the right-hand side of each (k-th) component of the momentum
equation, where hj is the metric coefficient and for each coordinate direction
Xj’ the dimensionless artificial diffusivity dj is positive and is chosen as

the larger of zero and the local quantity L (o ReAx- -1)/Re. Here, Ug is the

]
effective dynamic viscosity and the local cell Reynolds number ReAx- for the
J
j-th direction is defined by
=R J|oax./ 2
Re, = Re |pu| Ax,/u, (2)

Ax
J
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This treatment lowers the formal accuracy to 0 (Ax), but the functional form

is such that accuracy in representing physical shear stresses in thin shear
layers with small normal velocity is not seriously degraded. This latter
property follows from the anisotropic form of the dissipation and the combina-

tion of both small normal velocity and small grid spacing in thin shear layers.

Split LBI Algorithm

Linearization and Time Differencing

The system of governing equations to be solved consists of three/four
equations: continuity and two/three components of momentum equation
in three/four dependent variables: p, u, v, w. Using notation similar to
that in [13], at a single grid point this system of equations can be written

in the following form:

3 H(¢)/at = D(¢) + S(¢) (3)

where ¢ is the column-vector of dependent variables, H and S are column-vector
algebraic functions of ¢, and D is a column vector whose elements are the
spatial differential operators which generate all spatial derivatives appearing
in the governing equation associated with that element.

The solution procedure is based on the following two-level implicit time-
difference approximations of (3):
n+l

(1 - ®Y/ae = s+ s™y 4 o1-g) @° + sT) (4)

where, for example, Hn+l denotes H(¢n+1) and At = tn+l - t%. The parameter B
(0.5 £ 8 5 1) permits a variable time-centering of the scheme, with a truncation
error of order [Atz, (g - 1/2) ar].

A local time linearization (Taylor expansion about ¢n) of requisite formal
accuracy is introduced, and this serves to define a linear differential
operator L (cf. [13]) such that

n+1

D =p" 4+ 1 " - ¢™ + o0 ey (5)
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Similarly, (6)
n+l Hn + (3H/3¢)n (¢n+l _ ¢n) +0 (Atz)

]
I

n+l s? 4 (BS/8¢)n (¢n+l _ ¢n) +0 (Atz) N

%2}
[]

Eqs. (5-7) are inserted into Eq. (4) to obtain the following system which is

linear in ¢n+l

n+l

(A - o L) (™ - ™) = ot @" + 5™ (8)

and which is termed a linearized block implicit (LBI) scheme. Here, A denotes

a square matrix defined by
A = (H/29)™ - BAt (35/9¢)" (9

Eq. (8) has 0 (At) accuracy unless H = ¢, in which case the accuracy is the

same as Eq. (4).

Special Treatment of Diffusive Terms

The time differencing of diffusive terms is modified to accomodate cross-
derivative terms and also turbulent viscosity and artificial dissipation coef-
ficients which depend on the solution variables. Although formal linearization
of the convection and pressure gradient terms and the resulting implicit coupling
of variables is critical to the stability and rapid convergence of the algorithm,
this does not appear to be important for the turbulent viscosity and artificial
dissipation coefficients. Since the relationship between Mg and dj and the
mean flow variables is not conveniently linearized, these diffusive coefficients
are evaluated explicitly at " during each time step. Notationally, this is
equivalent to neglecting terms proportional to Bue/a¢or-adj/a¢ in Ln, which are
formally present in the Taylor expansion (5), but retaining all terms proportional
to u, or d. in both L" and D".

1t has been found through extensive experience that this has little if any
effect on the performance of the algorithm. This treatment also has the added
benefit that the turbulence model equations can be decoupled from the system
of mean flow equations by an appropriate matrix partitioning (cf. [15]) and
solved separately in each step of the ADI solution procedure. This reduces
the block size of the block tridiagonal systems which must be solved in each

step and thus reduces the computational labor.
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In addition, the viscous terms in the present formulation include a
number of spatial cross-derivative terms. Although it is possible to treat
cross~derivative terms implicitly within the ADI treatment which follows, it
is not at all convenient to do so, and consequently, all cross-derivative
terms are evaluated explicitly at t". For a scalar model equation representing
combined convection and diffusion, it has been shown by Beam and Warming
that the explicit treatment of cross-derivative terms does not degrade the
unconditional stability of the present algorithm. To preserve notational
simplicity, it is understood that all cross-derivative terms appearing in Lt
are neglected but are retained in pD". It is important to note that neglecting
n+1_¢n =0
and thus Eq. (8) reduces to the steady form of the equations: p" + s™ = 0.

terms in L" has no effect on steady solutions of Eq. (8), since ¢

Aside from stability considerations, the only effect of neglecting terms in

n . . .
L is to introduce an 0 (At) truncation error.

Consistent Splitting of the LBI Scheme

To obtain an efficient algorithm, the linearized system (8) is split
using ADI techniques. To obtain the split scheme, the multidimensional
operator L is rewritten as the sum of three "one-dimensional' sub-operators
Li (i =1, 2, 3) each of which contains all terms having derivatives with
respect to the i~th coordinate. The split form of Eq. (8) can be derived
either as in [13, 15] by following the procedure described by Douglas and
Gunn [16] in their generalization and unification of scalar ADI schemes, or
using approximate factorization. For the present system of equations, the

split algorithm is given by

(a - BAtL?) (¢* - o™ = at (@ + 8T (10a)

4 - sae) (7= 6™ = A 67 - ¢ (10b)
* %k

(4 - gatLd) (67— 0™ = A (67— ¢ (100

where ¢* and ¢** are consistent intermediate solutions. If spatial deriva-
tives appearing in Li and D are replaced by three-point difference formulas, as
indicated previously, then each step in Egs. (10a-c) can be solved by a block-
tridiagonal elimination.

Combining Eqs. (10a-c) gives

- - +1
(a - BAtL;) Al - BAtLg) At - BAtLg) " -

¢
(11)
= At (D" + sM
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which approximates the unsplit shceme (8) to O (At2). Since the intermediate

steps are also consistent approximations for Eq. (8), physical boundary

conditions can be used

homogeneous operators,

the property that ¢

ntl _ ¢
+hiics A
Liiuo u
oes no

*

*% n
= ¢ = ¢ and satisfy

* %
for ¢ and ¢ [13, 15)]. TFinally, since
it follows from Eqs. (l0a-c) that steady

the Li are

solutions have
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Fig. 1 - Schematic of the inlet/diffuser model.,
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User's Manual

The present manual is prepared for the INLTS.GOl CODE, which is the
first version of the MINT INLET CODE, This particular version of the code is
being stored on the Lewis IBM 370-3033 with TSS operating system and is written
to solve the multi-dimensional ensemble-averaged time-dependent Navier-Stokes
equations for turbulent, shocked flows in contoured, straight ducts with
rectangular cross—-sections. The coordinate system is nonorthogonal, contour-
fitted and the equations are cast into the so-called strong conservation form.
For the present time, the solution of the energy equation is replaced by the
assumption that the total temperature is constant throughout the flowfield,
although an energy equation can be activated. The effects of turbulence are
represented by a mixing length model and the shock is captured by a second
order artificial dissipation technique. The numerical procedure solves the
time-dependent equations beginning with a specified initial condition and appro-
priate boundary conditions. Detailed descriptions of these various items can
be found in the previous sections and will not be repeated here.

The INLTS.GOl CODE combines a BLOCK DATA program (BLKDAT) containing
pertinent data statements, a main program (DAL) and a series of subroutines
to perform the required calculations. Chart 1 shows the overall program
flow, Chart 2 illustrates the input and initialization procedures, Chart 3
is a global description of the execution control. These program flow
charts only provide a broad picture of the code. The interested user
should consult the program listing about the details. Since the contour
of the inlet varies from case to case according to user's interest, the
user must set up the particular contour by slightly modifying the following
subroutines: TIMGEO, INVICD and SPREAD.

In SUBROUTINE TIMGEO, the variables RBMAX and RBMIN must be specified
by the user. RBMAX is the x-coordinate of the top wall at a given streamwise
location and RBMIN is the x-coordinate of the bottom wall at the same streamwise
location. In SUBROUTINE INVICD, the variable MZSHK must be given by the
user. This variable indicates the initial location of the normal shock in
the starting flow field, e.g., MZSHK = 10 means that at the 10th stream-
wise grid point a normal shock will be generated according to the Rankine-

Hugoniot relation. Obviously, if the inflow is not supersonic and the
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one-dimensional inviscid theory does not indicate an internal supersonic

region, then MZSHK must be set to be an integer greater than the total

number of streamwise grid points. In SUBROUTINE SPREAD, the variables

PINVCD and HEIT must be specified by user. PINVCD is the dimensionless
static pressure at the outflow section obtained